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ABSTRACT

Consider the nonlinear elliptic problem.

-Au f(u) 
1xI <

*(* ) ,. ..-...

u - xJ -R.
Suppose this problem has a family of positive radial solutions parametrized

by R, i.e., u(Ixl). in--the paperwe study the possibility of the existence .-

of nonradial solutions of (*) bifurcating from the radial solutions family.
,%%

Answering a question posed by Smoller and Wasserman, e-show this happens

if f satisfies suitable assumptions. Therefore, we investigate ihe global

structure of the nonradial solution set / a-
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SIGNIFICANCE AND EXPLANATION

Consider the nonlinear elliptic PDZ .

* W .-,.o
I' !

Au -f~u) 

lxi < R

U- . *I* R

Suppose this problem has a family of positive radial solutions parametrized .

by R, i.e., uR(lxl). We are interested in the way in which this family of

solutions can bifurcate into nonradial solutions. When this happens we say

that the (radial)' symmetry breaks.

We give sufficient conditions for symmetry breaking to occur and we study

the structure of the nonsymetric solution set.
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Consider the problem
-Au flu) in B x

u 0 on B R

where sR 7P, n ) 2, is the open ball of radius R centered at the origin and

S: R 3 *It is a function.

Suppose that there exists an interval (R1,R2 C R+ such that V R 6 (RIR 2 ) the -

problem (1.1) has a radial solution up. A natural question to ask is whether or not for

these values of R there are nonradial solutions, and, in particular, whether the

nonradial solutions, if they exist, are close to the radial ones. In some cases it is -'*. -

easily possible to give a (negative) answer. If, for example, f is non negative (or non

positive) a simple application of the maximum principle and of a well known theorem by

Gidas-.i-Nirenberg 15] permit us to conclude that every solution of (1.1) mst be radially

symmetric.

In this paper we are interested in the possibility of the existence of nonradial

solutions of (1.1) bifurcating from the radial family.

In order to be more precise it is useful to rewrite the problem (1.1) in the form

(1.2) *(R,u) " 0

where

~ + N ~~1+6 c 1

0 R CO (il C~ 0 4- .-

is the operator defined by

(1.3) (R,u) * u - 2 G f(u) G - (_A) 1

Istituto di Matematica, Facolti di Scienze della Universitt di Palermo, Via Archirafi n.

34, 90123 PAL3PDW, ITALY.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by a CNR-NATO
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I and CO  (B1) denotes the set of the continuously differentiable functions on B which
vanish on AB I and whose first order derivatives are H81der continuous in BI with

exponent a (a e (0,1)). C (B is a Panach space under the usual norm

Iu (x)-u e,)l
IUul a = max Iu(x)I + max max lu (x)l + max max

xeB1 1i<n xeB xi 1cicn x,yeB !x-y

Then to a radial solution uR P C () of (1.1) there corresponds the solution of (1.2),
+ 1+ei --

(R,UR) e R x Co  (P1),u() u (.).

We will say that the symetry breaks at R if (R,u_) is a nonradial bifurcation

point i.e. if every neighborhood of (R,up) contains solutions of (1.2) (R,u) with u

nonradial.

It is known (see for example [41) that a necessary condition to have symmetry breaking

at R is that ker u(R,u) contains nonradial functions.

We are concerned with qiving sufficient conditions to have nonradial bifurcation for

(1.2) at a point (R,uR) where uR  is a positive radial function.

Our main interest is in a problem posed by smoller and Wasserman in [81, where they

study symmetry breaking problems for positive solutions of semilinear elliptic equations.

They close (8] with the following conjecture: suppose f e F, F being the family of

functions f e c2(R) such that f(0) < 0, (f(t)/t)' > 0 and f"(t) C 0 V t ) 0 and

f(t) > 0 for some t > 0. Then by a result of [7] it is known that there is an interval

(R
1
,R 2] such that V R e (RI,R 2] there exists a unique positive radial solution of (1.1)

and the necessary condition for the symmetry breaking is satisfied only if R = R2. Does

the symmetry break at R2?

We will show this actually happens for f "generically" chosen in the subclass F'

of F made by the function satisfying the slightly stronger condition f"(t) < 0 . - -.

V t o 0. Here "generically" means that given f e F', it is possible to compose it with

an arbitrarily small translation obtaining a function which is still in F and for which

there is symmetry breaking from the positive sulutions. =

-2-
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We will prove, more, that this bifurcation phennon is global i.e. the set of

nonradial solutions of (1.2) bifurcating from (R2 ,uR2) is either unbounded in LA.-
m+ xlea.-

XC (B 1  or meets the connected component of the radial solutions of (1.2) containing

the positive solutions in a point different from (R2,UR2).

In our argument we have taken advantage of some of 
the ideas of []Ol indeed, using the

method introduced in (8], bmoller and Wasserman could have obtained an analogous local 0 "

result. However our proof is more straightforward and simpler. Moreover our point of view

allows us to investigate and understand the global structure of the nonradial solutions

set. 
_S

The paper is organized as follows: first, in section 2, the bifurcation problem from

a family radial solutions is studied in a little more abstract framework. Then, in section I

3, the result is applied to the Smoller-Wasserman problem to get a local symmetry

breaking. Finally the global bifurcation result is proved 
in section 4.

Acknowledgement. I am grateful to Professor P. H. Rabinowitz for several helpful

discussions on the subject.
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2.

In what follows ye will denote by C.0 (BI and CO'(a 1) the subspaces of

l 1 . .
C (W,) consisting respectively of radial functions and of functions even with respect to

the first n - 1 coordinates, i.e.

C - ru eC 0  ( 1  u(x) -u(fxf)

.-e C u(xl#X 2 ., x- "° x 'C0  (21.) - u c0  ()u(-xl 2-Xn-1n

4 will be the operator defined by (1.3).

The aim of this section is to prove the following:

Theorem 2.1. Suppose that there exists R, C e R , < ( R and a C
1  

map

V : (R-C,R+t) ( C0  n1)

such that if we put Y(R) 2 uR  the following conditions hold

HI) V R e (R-C,R+e), (R,uR) is a solution of (1.2), uR e C0  (i1 )  and there is a

neighborhood of (R,u_) in (R-C,R+C) x C (B in which there are no
R

solutions of 11.2) except thes"

H2 ) u is positive and - - 0.
R R r1l'''..

H3) f"(u_)(P) + 2 f'(u) 0 0.
R lH''

Then (R,u_) is a nonradial bifurcation point of 4,

- ~1+f-- 1+ft----
renote by 4 (R,u) the linear operator from 0 (B In C 5, )  defined by"o 0 31 in 0 ~ e

4 (R,u)v - v - R
2
G ft(u)v

* In order to prove theorem 2.1 we start with a lea which gives a characterisation

of ker u (Ru) when (R,u) is a solution of (1.2) and u does not change sign in B1 .

We recall that in this case u is, by the Gidae-Ni-Nirenberg theorem (51, a radial

function.

,,*.. .- '
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]aJl~. Let (Ru) be a solution of (1.2) where u is positive [negative]. if

K 3 (v ( c ) s v + 2 G f'(u)v 01

then K is

(a) either (01 or a I dimensional set made by radial functions if r-1 V .of

(b) either an n-dimensional set made by nonradial functions or an (n+l)-dimensional

set spanned by I radial function and n nonradial functions if i r - - 0.

Proof. Suppose u is positive. Then, as mentioned before, by the Gidaes-Ni-Nirenberq

dtheorem [5, u Is a radial function and, moreover, I u(r) ( 0, 0 ( r < 1.

It is a standard result (3] that every element of K can be written in the form

(2.1) v(r,4 ) a k (r0 k(A) 0 4 r C I A e 8
k0 t

Where f0 is a constant and for k ) 1, ok is an eigenfunction of the Laplacian on the

(n-1)-sphere en-1 corresponding to the k-th nonradial e*ienvalue. Hence ak(r) is a p

solution of

(2.2) -r 1 "  (r wl (r)) + r- 1 w(r) - R2f'(u)w(r)
where r (0,1) and lk-k(k + n - 2) for k ) 1. Moreover ak(a) 0 nd by the

continuity of v in Sl1 &k(0) - 0 YT k. It is obvious then that any &k  and in

" particular a0  is uniquely determined up to a constant.
dDifferentiating -Au - P2f(u) with respect to x1 , we deduce that y- u is a

solution of
I• 

.%

*(2.3) -r 1n d (rn-1 w*(r)) + r'2 (n-1)w(r) R R2 f(u)w(r)dr

0 - r < 1, satisfying the condition w(O) - 0.

Thus

a - (- U) c -const.dr 9

because both solve (2.3) with the initial condition w(0) - 0. So in the case (a),

a(,) - 0 implies c 0.

If k > 1 k > n-1 so ak Ias at least k - I zeros in (0,I). Using comparison

arguments, since ! u Is never 0 in (0,1), from (2.2) and (2.3) we deduce then
Or

ak 0 V k I

- -

Ii.2."
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.9.

Therefore we can conclude that in case (a), the set K is (c a0 lr)/c e R1 so is

f0l or a 1-dimensional set according to a0 F 0 or not. In case (b)

K- 1ca(r) + c 4 -1) 0 1)/Clc e .
10 2dr 1 12..

n so, since W1 (q) varies in an n-dimensional space (the space of the spberical harmonics of

d
the first order in n variables) and a- u 0 0 in 0 < r < 1, the conclusion follows.

If u is negative the proof is the same after observing that Gidas-Ni-Nirenberg

dtheorem implies u radial and 'u > 0 V r 6 (0,1). U

Remark 2.3. A result analogous to lema 2.2 is proved in [7), but, for completeness, we

have preferred to give the above proof here. It is slightly different from that of (7].

we recall now a bifurcation theorem by Crandall and labinowitz (1).

SIELa4* Let XC, Y be Banach spaces, V a neighborhood of 0 in X. X~, e 46 R, and

P (A-£,X+e) X V Y ,

* have the properties

a) r0) -0 V X~ <~1 C

b) the 4artial derivatives Px, rX, rjx exist and are continuous

c) ker F (X,0) and Y\ker p (%,0) are one dimensional

d) IF (-,O)x0 j Ranoe(Fx(7,0)) where ker(P (lT,0)) - spanrx0"-l.

If Z is any complement of ker(P (1,0)) in X then there is a neighborhood U ofx
(1,0) in R x X, an Interval (-a,a) and continuous functions R -a,a) * -

* (-a,a) * Z such that M(0) - A *(0) - 0 and

P- (0) n l = (M(a), ax0 + 041(m)) al < al U f(W,0) ( ,0) e u1

Proof of Theorem 2.1

Consider the operator

- - 1+-(
F (R-£,R+£) x C0  1  C0  (-.)

defined by

F(P,z) - z + uR + R
2G f(z+UR)

where G was introduced in 11, (1.3). Note that G is a compact operator from C (•)

-6- ''"%.0•
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linc UR solves (1.2), 1(R,0) -0V R e (R-CFR+C).

it is clear that proving that there are nonradial solutions of ICR,.) -0 in any

neighborhood of (R,0) in equivalent to proving that CR,u) is a nonradial bifurcation
lbR

point of *

The operator

is defined by

V. V R2Gf'(uR)v L

and using H12) and lea (2.2) we deduce that the set

K fV e C1 (a -ROv 010 1 3 R.)

is either n or n+1 dimnensional.

Hypothesis B1) and H3) exclude the last possibility. Indeed consider the restriction O.

of F to (R-e,3+e) x C0  (S~) it defines an operator

Z i-,+")x 0  (B) C0  (i~

such that ;(R,0) -0 V R e Rgr)

Jeing the regularity of Y it is easy to check that the condition (b) of theorem 2.4

is satisfied. Moreover

e C- e B -I'n1  a (,O)v- 01 - nf

Thus if X is (n+)-dimensional, R is 1-dimensional, and the condition (c) of

Theorem 2.4 is verified too. The last condition of Theorem 2.4 in our came becomes

'Rjf(u )y'(j) + _r(um dr p0 0
R R

where V 6 K and, by H3), it is fulfilled. Then we can deduce that in any neighborhood

Of (R,0) there are nontrivial radial solutions of iCR.0) - 0. But this ipplies that in

any neighborhood of (R,u_) there are radial solutions of (1.2) different from those of .*

R . %*

the type CR,YCR)) in contradiction to 81). So K must be n-dimensional and consist of .

nonradial functions.

Since

-7-
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7S

- -u and -u 1
2, r dr - dr 1I

differertiating the equation -Au - R 2f(u), with respect to xi we see that is a

solution of -Av i Rf*(u )vIn asatisfying the 0-boundary condition. Then the set

B R T 1' 1,2... .nt

*is a basis for K. Therefore it is easy to check that

K~ l 0  ( 1)

Ris a 1-dimensional set [spanned by i-' a nonradial )function].
3n

Now consider the restriction of F to (KR-~ C0  (BI). It defines an operator

F (-Re)xC0  (B) I CO (BIj

and arguing in the same way as before for F, we can apply Theorem 2.4 and conclude that,

* in a suitable neighborhood V of (i,u_ in (-,+) C0  (B) the set of nontrivial

*solutions of F(R,z) =0 is a continuous branch of nonradial functions. U

Remark 2.5. If we denote by 0(N) the group of the orthogonal matrix T acting on I

and by r the representation of 0(N) in C 8(B,) defined by
0 +z

r(T)z(x) - z(Tx) , z e c (B ), T e 0(N)
0 1

the operator F turns out to be equivariant, i.e.

def1 '(T)F(R,Z) = F(R,Z(Tx)) -F(R,r(T)z)

and the set of the solutions of F(R,z) =0 is invariant. In fact, if F(R,z) -0

0 - r(T)F(R,z) =F(R,r(T)z)

Moreover it is not difficult to check that the group 0(N) acts transitively on K,

i.e.

~ 12e K, v, 0 ZE e Re and T e 0(N) such that "2 r(T)v1

So the manifold of the nontrivial and nonradial solutions of F(R,z) - 0 in At

corresponds, via the group action, to an n-dimensional set in (-CR ) X C 0 (B I of

nonradial solutions of P(R,Z) -0.

%-8-



Remark 2.6. A more precise description of the bifurcating set from (R,O), of

F(R,z) - 0 can be obtained using a theorem of Prodi ([63, Th. 1) or a theorem of

Vanderbauwede ((11], Th. 6.2.6) concerning bifurcation for Fredholm operators of 0-index,

subject to the action of a group of symetries, vhen the dimension of the kernel of the

linearized operator is bigger than 1. Both of them allow us to conclude that, under the

hypothesis of theorem 2.1, the bifurcating set is locally an n-dimensional manifold.

But, since in our application we are more interested in the "global" structure of the

bifurcating set, we have preferred to state the local bifurcation result in a way such that

the proof is sipler.

%p

th I

!-9-
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Consider the family F of functions f e O2(R) satisfying the following assumption

hi) f(O) < 0 1 3t > 0 t f(t) >0

h 2 ) f"(t) < 0 V t )0 0

h3 ) rf~)'> 0 V t ), 0

In [7] it was proved that

Z~3~s..d*For each f e F, a R1 , Re ie t 0 < R, < R such that V R e (R1,R] the

problem (1.1) has a unique positive (and therefore radial) solution UR and

d l _ _ _ _ _ _ _

r URI r- C 0 where the eauality holds if and only if Rl - R.

This section will be devoted to the study, locally, of the symetry breaking problem

for this class of functions.

For A e le let fA~t) - f(t-5).

we have the following result:

Let f e F. Then ZA 9 (f) > 0 such that V e [0,81, f. e F.Let

(R,R] denote the interval of 3+such that V R e (R,RJ the problem

AuA: fA(u) in BR

u -0 on P

has a unique positive souton The for almost every A e [0,5] the symetry breaks at

Remark 3.3. observe that th~e interval (R1 ,Rl eepends on Aand f.

We start the proof of theorem 3.2 with the

V' f e F ZAO 8(f) :VA e [0,%] f., e F.

-10-
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Proof. We begin by observing that it is an easy exercise to verify that hi), h2), h3)

4. imply

(3.1) fl(t) > 0 V t >O 0 .'-,,"

By the continuity of f, f f" it in possible to find , 0 such that

f t ( < 0

f'(t) > 0 v t e 6-A00].

fa(t) < 0

and

f(tI) >0 V t * I
then fA v A e [O ]01 satisfies hi), h2) and fA(t) > 0 V t ) 0

in order to verify h3 ) we have to show that

fk(t)t - fA(t) > 0 V A e (0,80].

f'(t-A)t - f(t-8) > 0 V t 0 0

and this is obvious too because

if t A A f'(t-A)t - f(t-A) > f'(t-A)(t-A) - f(t-A)

while if t < A f'(t-A) > 0 and f(t-A) < 0. -

We now turn to the proof of the symmetry breaking result as an application of Theorem

2.1.

In order to do this, first we need to give an idea of the way in which Theorem 3.1 Is

proved in [7].

We observe that since a positive solution of (1.1) is a radial function (by the Gidas-

Ni-virenberg theorem), it must satisfy the boundary value problem

n-Iru +" " u + f(u) -0 0 < r < R

(3.2) "r'"0IU r (O) )00 0 _

I-,

- 1%I- . 4 -S
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Then the initial value problem

u +n1u + f(u) 0 0O< r <

r

is considered (when N is a suitably big number). The solution of this IVP in denoted by

It is shown that if f e F, s p such that V p )p the unique solution of (3.3),

u(*,p) is such that u(R,p) =0 for some R.

Precisely it is proved that, if we define

R(P) U inrR t u(3,p) -01

*the domain of R(p) is (p,+"), 3(p) is continuous decreasing, lin R(p) -R 1,

0 < R I (p), ur(R(p),p) < 0 V p > p and u r(3p),p) - 0. so for p > p, the solution

u(-,P) of (3.3) will be the unique positive solution of (3.2) in 0 < r < 3(p) (and,

* then, a radial solution of (1.1)) satisfying the boundary condition u(R(p)) -0.

of course u(*,p) can be considered as a function of both it@ arguments in

10,M] X R+ (N4 > 3(p)) and it can be proved (see for example (7) appendix] that if

f ec0 so is U.

Suppose now that

(3.4) u (R,p) 00 where R p)u

*Then by the implicit function theorem we deduce that there exists a neighborhood of 3)

n = (3R-E,R+E) X (p-l,p+v) such that all of the solutions in %1? of the equation

* ~u(R,p) =0 are pairs (R,p(R)) where p is a C' function defined in (-,+)

Thus we are able to define

14-
Y (R-e,R+e) C C0  (~

* by

Moreover it is not difficult to see that there is a neiohborhood of 3u)

+ I+a-
U= ((R,U) e R X C0  sN ) 1-7I < C, 1u-uI < C such that to each R £ 13-R1 < C there

corresponds a unique radial solution of (1.1) in U.*. .

-12-
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It is clear then that, since u is a C1 function of r and p, Y is continuous

differentiable and satisfles the conditions U1 ) and 92 ) of the Theorem 2.1. Moreover

(Y'(R))(x) - ur(Rlxep(r))IxI +. u (Rlxl.p(r))p'(R)

ote that V x e B1. u(R*.p(R)) ) 0 and u_(R-,p(R)) < 0. by the Gidas-gi-Mirenberg

theorem, and p (R) - 0.

Therefore the condition "3) of theorem 2.1 become e

K r~j~r(3.5)(R)II + 2f'(u ) ~0

anZi IWvrfied beause if fe Ffs(:)< and (:)i ::0 t: b 0. hei

. ~~Theorem (2.1), then, will give our statement if we prove that, in our hypothesis, .•.'

(3.4) is verified.

Bo we have to show that for fixed f e F , >R 0 a.t. for ae.. A e (0,81, the

solution u of(3.3) corresponding to fS verifies (3.4).

In order to do this, consider u, the solution of (3.3) related to f, and observe

that u takes negative values for r e (O,R(p)): in fact V p > p, u(R(p),p) - 0 and

ur(3t(p),p ) < 0. ". -

Let 7 > 0 be a number such that is a value of u. By Bard's theorem (101 almost

every number in (-,03 will be a regular value of u. Let us take T minfWA where

00A" 0 is the number defined in lemarn 3.4. Choose 8 e 10,-It] such that -A is a regular

value of u and consider

u A

Then

n-1 n -
urr r + f(u) -rr r Ur + f '

and, since u(.,p) satisfies the initial conditions u;(Op) - 0, u(Op) - p, ;(.,p+8)

satisfies (Op+A) - 0 and ;(O,p 8) - p+8. Obviously 0 is a regular value of u

because u - 0 if and only if u -

Now to got (3.4) obeerve that fA e F so ipq and a continuous function

R(p) V p > p. ;(r,p) is the only positive solution of

-13-
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Irr rF UrfRU O Or(

u~ r(0) -0 -u(;(P))

* and i(p) is the only value for which

U(R(pt).PR) -0 U (R(pt),plt)

* Since 0 ia a regular value of 0, ~ 0. U

pp
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4.

This section will be devoted to the proof of a global result concerning theQ

bifurcating set of nonradial solutions of (1.2).

\* .h .,-

In what foliows f will be a fixed function in F and i,0the operators

14.6 - '-1.6". .

4% (a.- I C ;(]

obtained restricting the operator * defined by (1.3) to 3'K CO (a 'I and to

a +. ;4-6i respectively.

we will suppose that f is an alemnt of F for which the local result of msmetry

breaking can be proved. We think it in useful to sumariae the properties of f.

PI XR* R. 0 < , < I T 33e (11IVR there exists a unique uR e C.'"a') Positive

such that *(3,u3 ) - 3  2G f (u3 ) 0. i.L u(r) <(0,0 < r 4 1, V R 6R, anddrr

," U

P2 ) z e) such that in U , ou)e roxC (o ) a o.ru < nu-uS (<0 the
UL

solution set of r(d'u) - 0. N. is made by pairs (,,up), u3  Y(), %Ohere Y is a

continuous differentiable function defined in (-cU+c) and y(R) < 0.

P3 ) (i,u) is a nonradial bifurcation point for 4.

Denote by
Z(,Ru 0 u6

A (ouR (R1 , 1  1 0 sete R..

U UN' u N.

.0

*'.. • o

% .% .t %
S.

P3) ( ..._)6 ... nonrAd~a'%bifurcation pon*o .



iu

I) R

R. i-C i&

There exists a neighbborhood V of 0 in (Rif;#4C) C- c ( 3) such that the

*only solutions of '4(R,U) - 0 in V are the 2gints of Al. So T R e there~ isu~&

a unique function uR e @ 9 such that (R,U1 t) e V end Z(RuR) -0.

Proof.* The statement follows using the property P2) if (a. uR) e N and observing that

*if (RIuR) e M\N Ul in in the interior part of the positive cone (uR > 0 and

d
dr R < 0, 0 < fIx < 1) so, by the property PI) cannot be a bifurcation point for

7

%

V%
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Zn what follows If P isa subset of 0 c C(_ 1) 0 (

a + Ci (9,)] we will denote
-, -1 - ( )-- o' tiel) t (au) " )--

f u e1 C ).)(rap. (11 C ,

:: ,., ti- ... -::£;::

AS norm In 113 C ~0  (31) we will take

l0,uO) - + lug. ,
c0  1 1. .

and if At i are subsets of g CO -)

o(A,S)

will be the distance between A and B.

Denote by I the connected coponent of the st of the solutions of 0( iu - 0 .

containing N

8 The set R% is either unbounded in t+ x ( 1) or is bounded in which

case it m (0,0).

Proof. pir t we observe that if (a#%) 6 9 by Isms 4.1 the Index

it(3,). I ,t0 ) is defined V i a1 (-'-)

moreover, by the honotopiy invariance property of the topological degree, must be constant

- 6 g.o, since the r c,,t derivative (liu._) is nonsingular (see proof of

b. 2.1) and then i(i,), u.,0) is equal to +i or -1, we can put

I': i(*(3,.),u3 ,0) - 1 ,Y 36 (3l,3.e)•

Suppoe that R\ is bounded and does not mset (0,0).

Then there exists an interval [',P*] c e 1 0 < I' C R", Such that

R\N' c (R','1 0  (_1)

We can a m a- ,. -

-ince Ila 1ut l -a and R\N is bounded and cannot meet any point

( ,,u') e 1' (by leas 4.1), an , most exist a it such that V R (R,,)"

-1-

" ".,'

6 MRu) e R\A' ->luil+6 < lullel )I.

- Co a'I) 0 (9,-:..

% -6

r 4 E*t bt. . . . . . * 4 ,-
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(%*ere YR, U1 is G.t. (Ru 1 ) e'1

Consider then a number lea R, < R* R! and

R, R n(C.4) -+

Of ~ -cours R. can beu. chse suhtht UIn is bounded. ften since R\JI is bounded

R* will be bounded. no, following the method described in (101 (Th. VI11.1) it is

possible to construct an open bounded met 0 in ER,,.-) x F~ 0 a containing 3. and

-. having no zeros of 1I(R,o) on its boundary 30. Thus the topological degree

d(O(R.), 03.0) Is defined V R31R

and, by the homotopy invariance property. want be constant. since if we take R (R) >RU)

* big enough 0R NoU we deduce

*dC(3.*), 0 .0o) -0 Ti a

* NMoreover V r. e (R.RJ,35 such that in the closed set

D(Rs)- fu e CO 'lu-u MR 4 sR1 there are no solutions of 1(.)-0 other

*than uR. So 1WR e(R*,RJ

d(;(R,.), 0 1;1"(uks ),0) -i('l(R,*),u R#0) -- 1

Now consider the set

It (R\U'-) n [(0,01 N - (
0* 1l)

* Since R\ M1 is bounded it is possible to construct (following (91 or (10)) an open

m et A in (0,R?1 2N C (' 3) containing 3' and having no zeros ot Z(R,.) on its

boundary 3.Then

d((.*) A 0) is defined VYR e [0,R1R

and, since for R < R' small enough AR U using the homotopy invariance property we

infer

*d('(R..)Ai.0) -0 T R e (0.3 10

on the other hand for R 6 (3. .3'!. A can be constructed such that

A3  3"'u~u~.s). o, y ecisonwe have viRe (16R.3

3-d(,)A.)-d((R..)'0p3( 3 .s R)'0) -1

and we get a contradiction.U

% %I
'06 e VP -P 4



Denote nov by

E - (Ru) e R I Ker *(Rt,u) 0' (o1 1

3 (Itu) e E and it is not difficult to see (using for example Corollary 1.13 and Theorem

1.16 of 121) that (R,u_ in an isolated point in E.

3 Lt Sbetheclsur i of the met of the olutions of *(RIz) -0

that are not in R.

Sis locally compact in le x C0 '(i,)

rc. the proof of theorm 3.2 we easily deduce that (R,u) is a nonradial

bifurcation point of * and there exists a ; > 0 such that in V S(,Dz) t R~-i < 1

Nu - u-1 <("I the bifurcating met is a continuous curve.

The following theorem gives a result sbout the global behavior of the met of nonradial

solutions of *(R.u) -0 bifurcating from (3,u)
R O

Zbsiu~k The connected comonent C of S U ((i~u) to which (R,u) belongs is
R -

either unbounded or meets E outside of a neighborhood of (;,u)
R

Usemark 4.4. Note that to C by the action of, the symetry, corresponds an n-dimensional

got of solutions of *(US) -0.

S in order to prove theorem 4.3 we require a lea.

1Sa 4.5S. If C is bounded and doss not met any point (R~u) e E\((R.u_)) then there
1+a R

4exists a bounded open net Oc 4 x C (B such that

i) C CO

11) 0On S 0

111) 0 n R -f(R,u) e R *RR < COI ' d lu-u I <C

where

* e*c mini q, e'O(6i~u_).v\((.uj).P(R.C\(CnU)))

0-12
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iv) Z0a 0 ,V(RU) e 0 Ia i 0 Co u _-u-- ; c- om(..u).R) a.

We vill not give here the proof of this Iema which can be done in the sam way, with

obvious modifications, that in [101 (LLma V111.3) or in [91 (Lama 1.2). U

Proof of theorem 4. .3.

We will argue by contradiction.
Suppose that C is bounded and does not meet any point (R,u.) e E\(R,u )1. Then-

there exist 0, C, a as in lame 4.5.

Let (R,u) e R, (R,u) 9 (U,u).
R

if 0 < J - < Co  and ,umg I < OP (R,u) e U n R, no, because of the 0

choice, u is uniquely determined as a function of R : u " UR. Thus put

M(R,u R ) - i OR'Sa)' $(R,u R ) 0 and there are no zero* of *(R,.) in t.

(RI x ANO R l ) where isuasIRu )) is the set
R\ 6C0  ii ! PZ-U1R 5 •R,)

f IR ItI < Co  and 4u -u ;0 e0 or if lR-il CO Put @(Ru) " then
0 .n

R nm D'u.•Isu' ,a+::i):

Take now R R < • R < R+0 and choose B big enough that 0 OF. -on-:,Ier

S- inffs1 , s R < L < R,, (L,u) eRI'

a > 0, because of the choice of e and since R R. Consider the set

M.~~/ 0)'. .( <

then

u(0\1) n (..al

is an open set in (3,R'] X and there are no seros of 4 on Sit.

Therefore

d((L,-)*BL,0) is defined and is constant V L e (R'1

by homotopy invariance, so is equal to 0 since . - . ..
R

On the other hand since R < R.
0

.*.

-20.. ".:
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e l t\ i( ,.)
and by excision we deduce

d(O(, O** 0 (UR,8s).0) - d(S;(,.lSk.o) - 0

Using the am argument we obtain the same result if R is such that R-3 < R < R.

moreover observe that, by the homotoW invariance property, 4(5(R,*),0 ,0) in

constant for a 6 (.3 O +-.C0 ).

Choose finally Ra and 1 I a3 -0 <  R <  < 1+O" Using the excision and

additivity properties and the fact that u is the only Moro of R*( ) in i(uR'MR

we Infer

d(;(.,. ),O, .0) - i(G(3,.),U .0) + 4(4(R,.),, '(U 6,.),o)
a a a

analogously

d('(R,).0 10) - B(*(3 ,.),u ,o) 4(ReuO3,u;.s 3 ),o) 0

from which

(4.1) i(*(3,.,.),u3 ,o1 - i((R,,.u 0)

But

S(u,u )v - v + 3 2 G f'(u )v

and

A. 3 G f (u Iii0 (by (3.S))

go an eigenvalue of ; (,uR) crosses 0 when R crosses ; and this eiganvalue is

simple. Then the index L(;(R,o),UR,O) must have opposite sign on opposite sides of -R

in (R-c 0 ,34e 0 ) in contradiction to (4.1). U

-21-
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